
6520_172.pdf


A Feasible Model-Based OPC Algorithm Using Jacobian


Matrix of Intensity Distribution Functions


Ye Chena, Kechih Wub, Zheng Shia and Xiaolang Yana


aInstitute of VLSI Design, Zhejiang University Hangzhou, 310027, China
{chenye, shiz, yan}@vlsi.zju.edu.cn


bAnchor Semiconductor, Inc. 1090 Kifer Road, Suite 200 Sunnyvale, CA 94086
kechihwu@anchorsemi.com


ABSTRACT


The correction accuracy of a model-based OPC (MB-OPC) depends critically on its edge offset calculation
scheme. In a normal MB-OPC algorithm, only the impact of the current edge is considered in calculating each
edge offset. As the k1 process factor decreases and design complexity increases, however, the interaction between
the edge segments becomes much larger. As a result, the normal MB-OPC algorithm may not always converge
or converge slowly. Controlling the EPE is thus become harder. To address this issue, a new kind of MB-OPC
algorithm based on MEEF matrix was introduced which is also called matrix OPC. In this paper, a variant of
such matrix OPC algorithm is proposed which is suitable for kernel-based lithography models. Comparing with
that based on MEEF matrix, this algorithm requires less computation in matrix construction. Sparsity control
scheme and RT reuse scheme are also used to make the correction speed be close to a normal one while keeping
its advantages on EPE control.
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1. INTRODUCTION


Model-based OPC (MB-OPC) algorithms usually can be divided into two steps, namely fragmentation step
and edge offset calculation step. In fragmentation step, edges in layout are broken into small segments, an
evaluation point and an offset direction are chosen for each edge segment. In edge offset calculation step, edges
are moved along the offset direction to fill the gaps between original patterns and simulation results. The
correction accuracy of an MB-OPC algorithm depends on both steps. As the k1 process factor decreases and
design complexity increases, the interactions between edge segments become much larger. In this case, normal
edge offset calculation method may face convergence problem,123 which means that some segments in the layout
are moved to their proper positions very slowly or even not moved to the right positions at all. Figure 1 shows
an example in which the line end is not convergent at all. Figure 2 shows another example, the edge position
oscillates between each two iterations and converges very slowly.


To improve OPC convergence, a new kind of MB-OPC algorithm was introduced which takes into account the
interaction between the edges by using the mask error enhancement factor (MEEF) matrix.4 Although better
convergence and tight EPE control has been reported, matrix OPC algorithms have not been widely adopted in
production due to the performance penalty.


In this paper, we propose a new algorithm, suitable for kernel-based lithography models, that will significantly
speed up the matrix OPC process. The key aspects of the new algorithm are as follows:


• evaluating intensity distribution function instead of EPE function


• evaluating Jacobian matrix of intensity distribution functions instead of MEEF matrix


• controlling the sparsity of Jacobian matrix to reduce the time spent both on generating Jacobian matrix
and solving the linear equations


• cutting layout into small pieces to deal with the super-linear complexity of solving linear equations
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Figure 1. Edge segments don’t converge after OPC Figure 2. OPC result oscillates, segments converge very
slowly
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Figure 3. Generalized intensity distribution function


• reusing information from neighbor areas to reduce the size of linear equations and get good initial values


Section 2 describes the methodology. Experimental results are presented in Section 3 followed by the conclu-
sions in Section 4.


2. METHODOLOGY


2.1. Generalized intensity distribution function


Figure 3(a) shows the intensity distribution I(x, y;mask) as a function of wafer coordinates and mask pat-
terns. During OPC process, modification of mask patterns consists of the offsets of all the edge segments, which
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Figure 4. Typical kernel shapes in an optical lithography
model


Figure 5. “Ambit” window


also change the intensity distribution. For the rest of the paper, we will refer the intensity distribution func-
tion with edge-shift denotation as the generalized intensity distribution function. For example, the intensity
distribution in Figure 3(b) is denoted as I(x, y; s0).


2.2. Problem definition


Suppose an already fragmented layout has a total of n elements with evaluation points of (x1, y1), (x2, y2), . . . ,
(xn, yn) and the offsets of these segments are denoted as s1, s2, . . . , sn. The generalized intensity distribution
function is I(x, y; s1, s2, . . . , sn). The objective of the OPC process is to generate a set of (s1, s2, . . . , sn) so as
to reduce the edge placement error (EPE) of each segment to zero. This is equivalent to making the value of
generalized intensity distribution function at each evaluation point equal to its threshold:


I(xi, yi; s1, s2, . . . , sn) = Tri (1)


where Tri is the threshold value at location (xi, yi). For all the segments, a system of equations can be built
as:


⎧⎪⎪⎨
⎪⎪⎩


I(x1, y1; s1, s2, . . . , sn) − Tr1 = 0
I(x2, y2; s1, s2, . . . , sn) − Tr2 = 0
. . .


I(xn, yn; s1, s2, . . . , sn) − Trn = 0


(2)


Tr1, T r2, . . . , T rn are all the same when a constant threshold resist (CTR) model is used.5 However, they
are functions of nearby patterns and the aerial image properties, such as intensity, intensity slope and so forth
when variable threshold resist (VTR) model is used.6


2.3. Solving the equations


Least square solution of Equation 2 is the best estimation of offsets which can cancel out distortion the most.
Plenty of algorithms can be used to solve the nonlinear equations. For example, a Newton’s method makes each
iteration as:


1. solving the system of linear equations


J(sk)dk = −(I(sk) − Tr(sk)) (3)


where sk, dk ∈ Rn, J(sk) means the Jacobian matrix of Equations 2 at sk.
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Figure 6. Jacobian matrix evaluation: (1) Calculate fki (2) Perturb edge j, calculate δfkij (3) Calculate JI(i, j) using
Equation 8


2. updating offsets
sk+1 = sk + dk (4)


The most time-consuming parts of solving the problem are:


• evaluation of the function


• evaluation of the Jacobian matrix


• solving the linear system


2.4. Intensity distribution function evaluation


The optical lithography model used in OPC applications is usually based on a group of convolution kernels.
The point intensity at (x, y) can be calculated by:


I(x, y) =
∑


k


|Φk ⊗ Mask|2 (5)


where Φk are convolution kernels and “Mask” are mask patterns in the “ambit” window of point (x, y). Figure
4 shows a group of convolution kernels. Figure 5 shows an example of “ambit” window. Patterns in the “ambit”
window contribute to the point intensity, while those outside don’t.7


2.5. Jacobian matrix evaluation


Jacobian matrix of Equation 2 is defined in Equation 6.


J =


⎡
⎢⎢⎢⎣


∂I1


∂s1


∂I1


∂s2


. . . ∂I1


∂sn


∂I2


∂s1


∂I2


∂s2


. . . ∂I2


∂sn


...
∂In


∂s1


∂In


∂s2


. . . ∂In


∂sn


⎤
⎥⎥⎥⎦ +


⎡
⎢⎢⎢⎣


∂Tr1


∂s1


∂Tr1


∂s2


. . . ∂Tr1


∂sn


∂Tr2


∂s1


∂Tr2


∂s2


. . . ∂Tr2


∂sn


...
∂Trn


∂s1


∂Trn


∂s2


. . . ∂Trn


∂sn


⎤
⎥⎥⎥⎦ = JI + JTr (6)


First we suppose that a constant threshold model is used, so the second term JTr = 0.


When kernel-based lithography model is used, which has been discussed in Section 2.4, JI(i, j) in the Jacobian
matrix can be calculated as below:
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JI(i, j) =
I ′ − I


δd


=


∑
k |Φk ⊗ (Maski + δMaskij)|


2 −
∑


k |Φk ⊗ Maski|
2


δd


=


∑
k(2 × Real((Φk ⊗ Maski) × (Φk ⊗ δMaskij)


∗)) +
∑


k |Φk ⊗ δMaskij |
2


δd


(7)


let,
fki = Φk ⊗ Maski


δfkij = Φk ⊗ δMaskij


we get,


JI(i, j) =


∑
k(2 × Real(fki × δf∗


kij)) +
∑


k |δfkij |
2


δd
(8)


Maski is all polygons within the “ambit” window of evaluation point (xi, yi). δMaskij is a small perturbation
rectangle near edge segment j. Figure 6 shows how the item JI(i, j) in the Jacobian matrix is calculated.
Calculating fki has a computation complexity of O(ne) when table-lookup method is used, where ne is the
number of edge segments in the “ambit” window.8 The value of ne can be greater than one hundred when doing
OPC, because that all edges are broken into small edge segments. δMaskij is a single box as shown in Figure 6,
which contains only 4 segments. So δfkij require much less computation time than fki.


Even doing this, the generation of Jacobian matrix will require plenty of computations. This is why we
choose not to describe the problem using explicitly EPE based equations. Calculating a MEEF matrix is even
more expensive, since it requires to evaluating intensity profile along offset direction and search the image edge
to calculate each item.2


When variable threshold resist (VTR) model is used, JTr �= 0. Each item can be calculated by


Jtr(i, j) =
Tr′ − Tr


δd
(9)


For simple VTR models9 which are only related to pattern density and intensity slope, the calculation can
be speed up using the similar way described before. Unfortunately, when a complex VTR model is used,10 the
computation time would increase significantly due to the supplementary calculation of the extra aerial image
properties such as Imax, Imin and etc., which cannot be decomposed as linear functions of mask patterns. In this
case, JI can be used as an approximated Jacobian matrix at the cost of losing some accuracy and with more
iterations. Nevertheless, sparsity control and RT reuse schemes which will be introduced in next sections should
still be applicable.


2.6. Sparsity Control Scheme


As shown in Figure 5, for each evaluation point, only the change of segments in the “ambit” window will affect
the intensity value, the Jacobian matrix is a sparse matrix in nature. Figure 7 shows the sparsity of a Jacobian
matrix. It is quite important to use a sparse linear equations solving algorithm in each Newton iteration step to
let the matrix-OPC algorithm have a feasible speed for real application.


Even more, an interaction radius that is typically smaller than the “ambit” can be used to control the sparsity
of Jacobian matrix. Since the sparsity is roughly proportional to the square of the interaction radius, a 50 percent
reduction in radius could result in a 75 percent reduction in sparsity. When the interaction radius is set to 0, only
the diagonal values in the Jacobian matrix are retained, which is just the same with a conventional model-based
OPC. Using this scheme, computations of evaluating Jacobian matrix and solving linear equations can be greatly
reduced. The interaction radius is a parameter for trading off between correction speed and correction accuracy.
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Figure 7. Sparsity of Jacobian Matrix


Figure 8. Cutting layout into region templates


2.7. Region Template Reuse Scheme


To control the size of Jacobian matrix, the whole layout is cut into small pieces, and OPC is performed on
the pieces one by one. As shown in Figure 8, each piece of the layout, which is called as region template (RT) in
this paper, contains two areas, namely the target area and the surrounding context. Both areas are corrected.
However, pattern modifications in the surrounding band are not used as the final result. This operation ensures
the correction result of target area. The size of the surrounding band is chosen empirically. In our tests 2˜3
times of “ambit” value is enough to ensure the correctness of target areas.


When correcting each RT, the information of previously processed RTs nearby can be reused. As illustrated
in Figure 9, correction is performed on RTs from left to right and from bottom to top. For each RT not on
the lower bottom of the layout, its left and/or bottom neighbors are already been corrected. Two levels of
reuse are possible. The first one, like the area 1 with hatch mark in Figure 9, is in the target area of corrected
neighbors. Edge segments in this area need not to be corrected when processing current RT, instead they act
as the environment of other patterns. This level of reuse reduces the number of variables in Equation 2. The
second level of reuse is applicable to area 2 with back hatch mark in Figure 9, they are in the surrounding areas
of nearby RTs. Although these pattern modifications are not final, they nevertheless provide good initial values,
for speeding up the convergence.
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Figure 9. RT reuse scheme
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Figure 10. Runtime comparison of three kinds of operations


3. COMPARISON AND EXPERIMENTAL RESULTS


We have implemented this algorithm. Some examples of using this algorithm are shown in this section. All
computations were performed on a Dell PowerEdge 1600 workstation (Xeon 1.8GHz × 2 CPU and 2GB Memory).
All experiments are performed on a 90nm layout which has an area of 100um × 100um. “Ambit” value of the
process model used in these examples is 1000nm.


Figure 10 compares the portion of time spent on three operations, namely evaluating the intensity function,
generating Jacobian matrix and solving the sparse linear equations for a single RT. It also shows how the
computing time varies with the problem dimension.


Figure 11 and Figure 12 compare the speed and the accuracy for different values of interaction radius, which
is performed on a RT having size of 8000nm × 8000nm. In this example, OPC accuracy changes little when
interaction radius decreases from “ambit” until it reaches about 200nm, where run time is reduced by about
30%. It is likely that an optimal value of interaction radius would depends on lithographic configuration and
layout patterns. Thus the user should choose a suitable value for each case.
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Figure 11. Run time comparison when different interaction
radii are used
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Figure 12. Standard deviation of residual EPE comparison
when different interaction radii are used
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Figure 13. Speed comparison when using different sizes of target area


Figure 13 shows the correction speed versus target area size. Three types of OPC algorithms are compared,
namely the normal MB-OPC (8 iterations are performed), the matrix OPC using and not using RT reuse scheme
(both with an interaction radius of 200nm). The size of surrounding band is 2000nm. It shows that RT reuse
effectively speeds up the matrix OPC by about 90%. The result also shows that the correction speed of using
matrix OPC with RT reuse can be close to that of a normal MB-OPC. 8000nm is the optimal size of the target
area for this example.


Figure 14 compares the residual EPE distributions of a single RT area (8000nm × 8000nm), one is corrected
using the matrix OPC and the other is corrected using a normal MB-OPC, both with 8 iterations. It shows that
the new algorithm has better EPE control. Figure 15 shows a layout corrected by this algorithm. Correction
results of the 1st, 4th and final iteration are shown and compared. In this example, some segments are too close
to each other after OPC. This is due to no constraint is applied on the calculated offsets here. In a real case the
minimum space should be kept to be compatible with mask making rules.
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Figure 14. Residual EPE distribution after OPC


Figure 15. An example using the new algorithm


4. CONCLUSION


In this paper we present a new kind of matrix OPC algorithm based on generalized intensity distribution
functions. A scheme of controlling the sparsity of Jacobian matrix using a proper interaction radius to reduce
the computation is introduced. A scheme of reusing information from already corrected RTs nearby is also
presented. Experiments prove the efficacy of these new methods. Results also show that the new algorithm can
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achieve better EPE control while keeping the correction speed close to normal OPC algorithm.
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