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ABSTRACT   

Hotspot classification is an important step of hotspot management. Under possible center-shifting condition, 

conventional hotspot classification by calculating pattern similarity through overlaying two hotspot patterns directly is 

not effective. This paper proposes a hotspot classification method based on higher-order local autocorrelation (HLAC). 

Firstly, we extract the features of the hotspot patterns using HLAC method. Secondly, the principal component analysis 

(PCA) is performed on the features for dimension reduction. Thirdly, the simplified low dimensional vector features of 

the hotspot patterns are used in the pre-clustering step. Finally, detailed clustering using pattern similarity calculated by 

discrete 2-d correlation is carried out. Because the HLAC based features are shifting-invariant, the center-shifting 

problem caused by the defect location inaccuracy can be overcome during the pre-clustering process. Experiment results 

show that the proposed method can classify hotspots under center-shifting condition effectively and speed up the 

classification process greatly. 
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1. INTRODUCTION  

 
As the technology node advances below 45nm, many of the manufacturability problems are caused by specific layout 

configurations defined as hotspots which might become yield detractors. Fig.1 shows a typical mask manufacturing and 

hotspot management flow which starts from design rule clean layout followed by Optical Proximity Correction (OPC) 

and Model Based Verification (MBV). Although after several iterations of OPC and MBV, the post-OPC layout can pass 

MBV, it cannot guarantee that there is no defect on the wafer because the model is not perfect especially when the 

pattern complexity increases. As a result, after wafer process, wafer inspection becomes a necessary step which finds the 

defect locations that are usually not accurate enough. Subsequently, fake defects which do not affect electrical 

connection are filtered out in defect filtering step. If there is no defect left after defect filtering, the design becomes the 

final product design. Otherwise, small pieces of design layout centered on the positions corresponding to the locations 

found in defect inspection step are clipped from the design layout with a fixed size. These small layout snippets are 

defined as hotspots. After that, the hotspots are classified into different groups since usually there are too many hotspots 

to be reviewed one by one. For each group, some representatives are selected out and added into the hotspot library 

which will be fed back to design stage [1, 2]. Hotspot classification is an important step of such a hotspot management. 

Ma and Ghan proposed an automatic hotspot classification method using pattern-based clustering in [3, 4]. It calculates 

pattern similarity through overlaying two hotspot patterns directly. It is workable for non-center-shifted hotspot patterns, 

but not suitable for hotspot classification under center-shifting condition. 

 

For higher performance of hotspot classification under center-shifting condition, this paper proposes a hotspot 

classification method based on higher-order local autocorrelation (HLAC). Section 2 describes the metric which 

indicates the similarity between two hotspot patterns and discrete 2-d correlation used for pattern similarity calculation 

under center-shifting condition. Section 3 discusses the clustering algorithm. Section 4 presents the proposed hotspot 

classification method based on HLAC. Section 5 shows the experiments and results followed by conclusions in Section 6. 
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Fig. 1 Mask manufacturing flow 

 

 

2. HOTSPOT PATTERN SIMILARITY AND DISCRETE 2-D CORRELATION 

 
As described in Section 1, the hotspot patterns are clipped from the full-chip layout with a fixed size of 2R x 2R, where R 

denotes the influencing distance of optical model kernels. An IC layout is binary, even with attenuated phase-shifting 

mask (PSM), therefore without losing generality we set the value of pixels covered by polygons to 1, and the value of 

pixels in the space to 0. If we overlay two binary images of hotspot pattern, the larger area of overlap indicates the higher 

similarity between them [3, 4]. Fig. 2 shows an example of pattern overlap.  

 

 
 

Fig. 2 An example of pattern overlap 

 

We thus define the similarity between two patterns P1 and P2 as following, 
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Overlap(P1,P2) denotes the overlapped polygon area of pattern P1 and P2, area(P1) and area(P2) indicate the total polygon 

areas of pattern P1 and P2 respectively. 

 

In hotspot classification process, the rotation or reflection of a pattern should be considered to be identical  to the original 

one, as Fig. 3 shows [3, 4]. 

 



 

 
 

 

 
 

Fig. 3. The eight transformations of a pattern 

 

A hotspot pattern clipped from the full-chip layout is centered on the defect location found in wafer inspection stage. 

Unfortunately, the defect location is not accurate enough usually. In other words, the hotspot pattern is very possibly 

center-shifted. As a result, the overlap metric cannot precisely indicate the similarity between the two patterns if we 

overlay such patterns. Fig. 4 shows an example of two similar yet center-shifted patterns. There is no overlap between 

the two patterns when we overlay them directly, although an almost exactly matching position can be found when we 

keep moving pattern B over pattern A, where the similarity between pattern A and B can approach 100%, actually. 

 

 
 

Fig. 4 An example of pattern overlay under center-shifting condition 

 

We calculate the discrete 2-d correlation to get the maximal overlap between two patterns. Suppose f(x,y) and g(x,y) are 

binary images of size M1xN1 and M2xN2. The size of discrete 2-d correlation f(x,y)*g(x,y) would be (M1+M2-

1)x(N1+N2-1). We can extend the images by padding with zeroes, 
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The correlation can be defined as 
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According to correlation theorem, it can be calculated by 
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where ‘*’ denotes the conjugate operation. 

 
Let matrices P1 and P2 indicate two MxN pixelated images of hotspot patterns. The discrete 2-d correlation of P1 and P2 

is a (2M-1)x(2N-1) matrix. The maximal value of element in the discrete 2-d correlation matrix indicates the maximal 



 

 
 

 

overlap between P1 and P2 when we move one pattern all over another. With the maximal overlap value, the similarity 

can be calculated by formula (1). 

 

3. CLUSTERING ALGORITHM 

 
Now that pattern similarity has been defined in Section 2, we need a clustering algorithm to group the hotspot patterns 

with certain similarity. Partitioning methods and hierarchical methods are two major types of clustering algorithms. In 

partitioning methods, the number of clusters should be determined before clustering process, while hierarchical methods 

can divide the dataset into any number of clusters. Hierarchical methods are suitable for hotspot classification because 

the number of clusters is uncertain before clustering, and they usually require the computation of a pair-wise distance 

matrix indicating the distance correlations between any two objects in the dataset. When the dataset is large, they are 

time-consuming. In this paper, we propose a heuristic sequential clustering algorithm, in which hotspot patterns are read 

from the dataset sequentially and inserted into evolving clusters. The pseudo code of this algorithm is listed below. 

 

{CLUSTERS represents the clustering result} 

{CLUSTER_METRIC is the representative pattern of this cluster, it is the first member of this cluster here} 

{Threshold (or Threshold_dist) is defined by user, larger Threshold (or smaller Threshold_dist) leads to tighter and 

more clusters} 

for each hotspot pattern f in the dataset do 

 if CLUSTERS is empty 

   make a new cluster and take this pattern f as the CLUSTER_METRIC 

  else 

   for each cluster in CLUSTERS do 

    calculate the pattern similarity (or distance) between f and CLUSTER_METRIC  

    if the pattern similarity > Threshold (or distance < Threshold_dist) 

     add the pattern f to this cluster 

     break 

    end if 

   end for 

   if the pattern f cannot be added to all of the existing clusters 

    make a new cluster and take this pattern f as the CLUSTER_METRIC 

   end if 

  end if 

 end for 

 

The time complexity of the proposed algorithm is O(mn), while the one of hierarchical method is O(n
2
), where m is the 

number of resulted clusters, n is the size of hotspot dataset. 

 

4. HIGHER-ORDER LOCAL AUTOCORRELATION BASED HOTSPOT 

CLASSIFICATION 

 
HLAC has been widely used in facial recognition [5,6], texture classification [7] and motion recognition [8], etc. With 

similarity defined by formula (1), discrete 2-d correlation and clustering algorithm described in Section 3, the 

classification is time-consuming when a hotspot database is large and shows diversity. For higher classification 

performance, we propose the HLAC based hotspot classification method, in which HLAC is used in hotspot patterns 

feature extraction and hotspot pre-clustering followed by detail clustering using discrete 2-d correlation. 

 

 



 

 
 

 

4.1 HLAC based Feature Extraction 

 

The Nth-order autocorrelation functions, extensions of autocorrelation functions, are defined as 
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where I(r) denotes the intensity at the observing pixel r, and a1, a2, …, aN are N displacements. For binary images, the 

Nth-order autocorrelation function can be regarded as counting the number of pixels which satisfy formula (7) 
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where “Λ” denotes logical operation “AND”. 

 

In other words, the Nth-order autocorrelation function can be regarded as counting the patterns characterized by the 

above logical statement over the binary image [9]. 

 

The orders and displacements in Eq. (6) are arbitrary. However, high-order features with a large range of displacement 

region become extremely numerous. Hence, the original HLAC features are restricted up to the second order and within 

a displacement range of 3×3 window. Fig. 5 [10] shows 25 mask patterns with 0, 1 and 2 displacements respectively. 

 

 
 

Fig. 5 25 mask patterns of the HLAC features (3x3)  

 

The HLAC feature values of a image are calculated by scanning the image with the 25 mask patterns in Fig. 5 and 

computing the sums of products of the intensities of corresponding pixels. Each value represents the power spectrum of 

the mask pattern. Therefore, the 25 mask patterns are regarded as the basis functions of frequency analysis [11]. 

 

It is well known that HLAC features are shift invariant. Hence, it is appropriate for the center-shifted hotspot pattern 

feature extraction. The features of a 3×3 displacement region mainly extract the local detailed information. Hotspot 

pattern image is binary, and most of the local subtlety information distributes on the polygon boundary. Therefore, after 

pixelate, we extract the polygon boundary of the hotspot pattern image to form the boundary image. Then each mask 

pattern in Fig.5 is scanned over the entire boundary image to calculate HLAC feature value f. For each hotspot pattern 

image, the operation is performed using 25 different mask patterns to create the feature vector (f1, f2,…, f25) in which f1 

denotes the total length of polygon boundary. With the total polygon area of a hotspot pattern as another feature f0, 

combining with the 25 dimensional HLAC based feature vector (f1, f2,…, f25), we create a 26 dimensional feature vector 

(f0, f1, f2,…, f25) for each hotspot pattern. 

 

4.2 Dimension Reduction with Principal Component Analysis 

 
Principal component analysis (PCA) is a mathematical procedure that uses an orthogonal transformation to convert a set 

of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal 

http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Correlation_and_dependence


 

 
 

 

components [12]. The 26 features of the feature vector described in Section 4.1 are correlated. Hence, we adopt PCA to 

reduce the vector dimension for higher pattern clustering efficiency. 

 

Fig. 6 shows the dimension reduction flow. After feature extraction, with f0 as a metric for convenience, a wide range 

subset of hotspot pattern feature vectors picked out of the hotspot pattern database is fed to PCA to find out the principal 

components. A low dimensional vector space is constructed with the several most important principal components with 

highest weights as bases. All of the hotspot pattern feature vectors are projected to the new low dimensional vector space. 

Finally, the simplified low dimensional feature vectors of the hotspot patterns are used in the clustering step. 

 

 
 

Fig. 6 Dimension reduction flow 

 
4.3 Pattern distance defined in the low dimensional vector space 

 
PCA is defined in such a way that the first principal component has the largest possible variance, and each succeeding 

component in turn has the highest variance possible under the constraint that it be orthogonal to the preceding 

components. Let (x1,x2,…,xn) and (y1,y2,…,yn) denote the coordinates in the low dimensional feature vector space of two 

hotspot patterns P1 and P2. The distance between P1 and P2 can be defined as 
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here i  denotes the weight of ith most important principal component, and 1 2 ,... n     . 26n  , usually 

4n   is accurate enough. The shorter distance means the higher similarity. 

 
4.4 Hotspot clustering 

 
When the hotspot patterns to be classified are diverse and of large scale, clustering using similarity defined in Section 2 

is time-consuming. On the other hand, clustering with HLAC features only is not effective enough, because the subset 

used in PCA cannot cover the whole database and the low dimensional feature vectors of two different hotspot patterns 

can become similar, since the feature extraction method based on HLAC described in Section 4.1 cannot guarantee that 

the relationship between hotspot pattern and HLAC based feature vector is a one-to-one mapping, owing to the fact that 

the local detailed information of binary hotspot pattern image is limited. Therefore, in the clustering step, we combine 

the two methods together to get higher clustering performance and meaningful clustering result. 

 

Fig. 7 shows the clustering flow. Firstly, we pre-cluster the hotspot patterns using HLAC features and pattern distance 

defined by formula (8). Then for each subset, we group them into sub-clusters using discrete 2-d correlation and 

similarity defined by formula (1). Finally, we pick out a representative for each sub-cluster, classify the representatives 

and put each sub-cluster into the final cluster to which its representative belongs.  



 

 
 

 

 
 

Fig. 7 HLAC based clustering 

 

5. EXPERIMENTS AND RESULTS 

 

Two datasets containing 955 and 3885 center-shifted hotspot patterns with maximal center-shifting distance up to 300nm 

respectively were used in the experiments. The hotspot patterns with size of 1um x 1um were extracted from an 

industrial 45nm M1 layer layout with an area of 3mm x 3mm. The grid used in pixelate is 20nm. The similarity 

thresholds used in clustering are 75% and 60%. All computations were performed on a Dell PowerEdge R610 

workstation (Xeon 2.8 GHzx24 CPUs and 32GB memory). 

 

We used three methods for classification here. Method-1 and Method-2 cluster hotspots using similarity defined by 

formula (1) in Section 2. To calculate overlap, Method-1 overlays two patterns directly, while Method-2 uses discrete 2-

d correlation. Method-3 is the proposed HLAC based method described in Section 4.4. In Method-3, we performed PCA 

on 100 hotspot patterns to construct the low dimensional vector space, which takes only 1.2 seconds. We set the weights 

of four most important principal components according to the eigenvalues generated by PCA, that is, 

1 0.47  , 2 0.2  , 3 0.15  , 4 0.08  , _ 0.565Threshold dist  . 

 

Table 1 compares the run time, the result cluster number and accuracies of the three methods. Min-SIG denotes the 

minimum value of similarity between two hotspot patterns in the same groups of classification result. Max-SBG 

indicates the maximal value of similarity between two hotspot patterns in different groups of classification result. Fig. 8 

and Fig. 9 show the comparison of sizes of final clusters when Threshold = 0.75. Fig. 10 and Fig. 11 show the 

comparison of sizes of final clusters when Threshold = 0.6. Larger Threshold leads to tighter and more clusters. 



 

 
 

 

From the results, we can see that the final cluster number and Max-SBG of Method-1 are much larger than those of 

Method-2 and Method-3, because Method-1 cannot cluster the similar hotspot patterns into the same cluster under 

center-shifting condition while Method-2 and Method-3 using discrete 2-d correlation can handle this problem 

effectively. Method-3 is much faster than Method-2. 

 
Table 1. Run time and classification accuracy 

Threshold = 0.75 

 Dataset 1 (955 hotspot patterns) Dataset 2 (3885 hotspot patterns) 

Method-1 Method-2 Method-3 Method-1 Method-2 Method-3 

Run time 181s 733s 193s 721s 1733s 478 

Cluster number 354 82 76 545 90 85 

Min-SIG 73.5% 72.7% 73.1% 74% 73.5% 73.2% 

Max-SBG 95.6% 68.9% 70.2% 94.7% 66.7 65.9% 

Threshold = 0.6 

 Dataset 1 (955 hotspot patterns) Dataset 2 (3885 hotspot patterns) 

Method-1 Method-2 Method-3 Method-1 Method-2 Method-3 

Run time 82s 244s 117s 296 845s 309s 

Cluster number 173 44 44 231 46 44 

Min-SIG 58.1% 57.6% 57.5% 58.5% 58% 57.8% 

Max-SBG 95.6% 54.3% 55.1% 94.7% 53.9% 54% 

 

 
Fig. 8 The comparison of sizes of final clusters for dataset 1 when Threshold = 0.75 

 
Fig. 9 The comparison of sizes of final clusters for dataset 2 when Threshold = 0.75 



 

 
 

 

 
Fig. 10 The comparison of sizes of final clusters for dataset 1 when Threshold = 0.6 

 
Fig. 11 The comparison of sizes of final clusters for dataset 2 when Threshold = 0.6 

 

Fig. 12 and Fig. 13 show some sample patterns of clustered hotspots of dataset1 and dataset2 using the proposed HLAC 

based method. Through observing these samples, we can sense that the similar center-shifted hotspots have been 

clustered into the same group. 

 

 
 

Fig. 12 Two examples of clustered hotspots of dataset1 

 



 

 
 

 

 
 

Fig. 13 Two examples of clustered hotspots of dataset2 

 

6. CONCLUSIONS 

 
This paper proposes a hotspot classification method based on HLAC. The key innovative part of this method is the pre-

clustering step with feature extraction based on HLAC before detailed clustering using pattern similarity. Experiments 

show that the proposed method speeds up the classification process greatly. 
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